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Graded contractions of representations of orthogonal and 
symplectic Lie algebras with respect to their maximal 
parabolic subalgebras 

Xiao-Dan Leng and J Patera 
Centre de recherches mathhnatiques, Universite de Monu6al, CP 6128-A, Montreal (Qu6bec) 
H3C 317, Canada 

Received 18 January 1994, in final form 19 September 1994 

Abstract. Parabolic gradings of the classical simple Lie algebras o(N, 0, (N > 5) and 
sp(2n. C), (n 2 2) with complex paramefen are described for all maximal parabolic subalgebras. 
AI1 contractions which leave a maximal parabolic subalgebra intact and which preserve a 
parabolic grading (parabolic wntractions of Lie algebras) are found. Contradons of the 
irreducible representations for each parabolic wntraction of the Lie algebra are the main results 
of the article. 

1. Introduction 

The study 111 of parabolic contractions of sl(N, C) and of its representations, including 
tensor products of the latter, is extended here to the remaining classical simple Lie algebras 
o ( N ,  C) and sp(Zn, C) and their representations. 

The method of OUT investigation is the same as in [l]; we find the grading-preserving 
contractions of the simple Lie algebras where the gradings are parabolic, i.e. the coarsest 
d i n g s  which display a maximal parabolic subalgebra as a sum of several grading 
subspaces of the simple Lie algebra. It tums out that for most of the maximal parabolic 
subalgebras of o(N,  C), n > 5, and sp(Zn, C), n > 2, the grading group involved is the 
cyclic group &. In a few extreme cases only, the grading group is &, as it was for sl(N, C). 
Consequently, the outcomes of the contraction procedure are more numerous here than in 

The motivation for a study of parabolic contractions of classical simple Lie algebras is 
similar for all of them. These algebras are most often used in applications where one, 
typically, tries to bring together as many different phenomena as possible in oder  to 
understand the common basic features underlying all of them. In doing this, symmetries 
related by standard homomorphisms, such as inclusion of one Lie algebra in another, offer 
obvious avenues for such a study. However, since the pioneering work of Wigner and Inonu 
30 years ago [2] a wider class of relations among symmetry algebras can be studied. The 
recent modifications 13-51 of Wigner's approach make the vast variety of deformations of 
Lie algebras more accessible to an exhaustive description by reducing the scope of a study 
to that of deformations preserving a (any) fixed grading by a finite Abelian group G. A 
complete classification of such deformations andlor contractions then becomes possible. In 
addition, it allows one to consider simultaneously many Lie algebras which admit a given 
grading. .Without the latter property neither this study nor [l] would have been practical. 
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Thus for all the cases included here we have only to solve one contraction problem with 
G = 5 .  For G = & our problem has already been solved in [ l ] .  

Most importantly, the insistence on preservation of a chosen grading during contraction 
led to a natural definition of graded contractions of representations of Lie algebras in [4]. 
This is a problem apparently never considered in mathematical literature. 

In recent physics literature one may also point out the papers [6, I ]  where deformations 
of representations of unitary Cayley-Klein algebras based on contractions are developed. 
Various other aspects of graded contractions of Lie algebras are found in [8-141. 

A physicist’s motivation for a study of parabolic contractions of classical Lie algebras 
would, typically, be related to the fact that most maximal parabolic subalgebras of classical 
Lie algebras are the Lie algebras of inhomogeneous transformations, i.e. a semidirect product 
of a large (often maximal) reductive subalgebra with an Abelian ideal of ‘translations’. The 
mechanism of the corresponding con&actions of irreducible representations of the classical 
Lie algebras then becomes a rich, largely unexplored source of specific information about 
indecomposable repzesentations of the Lie algebra of inhomogeneous transformations. 

An overview of the graded contractions of representations is in [5] and is recalled again 
in [l]; therefore, here we point out only the definitions. A Lie algebra L and representation 
acting in V ,  graded by the same Abelian grading group G ,  decompose as linear spaces into 
the direct sum of the grading subspaces 

X-D lRng and J Patera 

Simultaneous grading of L and V by the same grading group G then implies the relations 

[Lj ,  LLI G Lj+& LjV, G V t m  (1.2) 

which should be read as being valid for any choice of elements of Lj. Lk and V,. 
We say that a grading displays a subalgebra of L if the subalgebra consists of several 

subspaces L,  in the decomposition (1.1) of L .  A grading of L is called parabolic if it 
displays a maximal parabolic subalgebra PA in a minimal number of subspaces L,. 

The contracted commutator is defined using a matrix E = ( ~ j k )  of conWaction parameters 

(1.3) 

In order that the outcome is a Lie algebra L‘, the parameters E ~ W  must be solutions of 
a system of quadratic equations ((1.9) of [ l ] )  following from the Jacobi identities. A 
renormalization of the elements of the subspaces, Lj --+ ajLj, (0 # aj E e), leads to an 
equivalent grading contraction 

[Lj ,  LWlc := &jk[Lj. Lkl E &jkLj+&. 

(1.3a) 

Using this freedom, we succeed in having E ~ W  = 0 or I in all of the cases considered here. 
A contraction of L is called parabolic if a maximal parabolic subalgebra PA of L is not 

deformed by the contraction. 
A contracted action of L on V is defined similarly by the matrix = (qj,) of 

contraction parameters defined for a fixed contracted Lie algebra LE as 

L; v, := *jm Lj v, (1.4) 
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and by the uncontracted action of L on V. In order for the contracted operation to be a 
representation of LE, a system of quadratic equations ((1.11) in [I]) has to be solved by @ 
for a given E. 

Finally, in order that a tensor product V 8 V’ of two representations~ of LE be a 
representation of LL, the contraction of V 8 V’ has to be introduced as 

(1.5) 

where ‘cjm are the contraction parameters, subject to a system of linear equations involving 
matrix elements of @ as coefficients ((1.13) in [l]). Similarly as in (1.34, renormalizations 
of the subspaces V, allow one to simplify the form of @ and r.  

It is convenient for OUT purposes to introduce the matrix K = ( K j k )  ( j ,  k E G )  of the 
grading structnre: 

Note that the definition implies K = K ~ .  For the parabolic gradings of the classical Lie 
algebras there is only one K per grading group. Namely, 

The contraction matrix E is the K for the contracted Lie algebra. In some cases [31 not all 
matrix elements of E can be made equal to 0 or 1. The appearance of 0 matrix elements in 
(1.7) and (1.8) is dictated by the parabolic gradings: the corresponding subspaces commute. 
The grading structure K of LV is analogous: ~ j k  = 0 and 1 respectively for LjV, = 0 and 

In these and subsequent contraction matrices the 0 represents a zero matrix element. It 
is convenient to distinguish 0 from zeros which arise in similar matrices as a result of a 
contraction. The rows and columns of K (and related matrices throughout this paper) are 
numbered from O~to n - 1 for 72,”. The upper lefi 2 x 2 comer in (1.7) and the 3 x 3 comer 
in (1.8) are the matrices K of the appropriate maximal parabolic subalgebras of L. 

In general, one could study deformations of Lie algebras starting from the Abelian 
algebras and deforming the 5’s of K into non-zero values. We exclude similar cases by the 
choice of our problem: a 0 of a K cannot be deformed to a non-zero matrix element of an 
E during a contraction, i.e. an Abelian Lie algebra is not contractable any further. 

We assume that the reader is familiar with the concept of weight decomposition of 
representation spaces of the classical Lie algebras, in particular, that hdshe can calculate 
the system of the weights starting from the highest one. 

LjV, = 1. 
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2. Parabolic gradings and contractions of o(N,  C) 

Let n = [ N p ]  be the rank of o(N, C). In this section, we first describe the parabolic 
gradings of the Lie algebras of o(N, C), N 3, and then the parabolic contractions of 
o(N, C). The four lowest cases, N = 3,4,5 and 6, are special because of the well known 
isomorphisms of the Lie algebras: 

O(3, C) N Sl(2, C) 

o(5, e) Y sp(4, C) 

o(4, C) N SI@, e) X s@, e) 
o(6, C) Y sl(4, C). 

(2.1) 

Nevertheless we include them in our considerations whenever thii does not cause excessive 
complication of the presentation of the results. 

As in [l], the maximal parabolic subalgebras PA of o(N, C), and consequently the 
parabolic gradings, are labelled by the integer A, where 

l < h < n  (2.2) 

which can be undestood as numbering the simple roots of o(N,  C). 
The maximal parabolic subalgebras PA of o(N,  C) are known. For our purpose it is 

convenient to characterize them by the subalgebra LO which is the zeroth component of the 
parabolic grading. Unlike the sl(N, C) case, here LO is not generally a maximal regular 
subalgebra of o(N,C). In table 1 we indicate the maximal regular subalgebra [U] of 
o(N, C) and the LO component of each parabolic grading. 

opn,  C), n > a 

sp(2n,C), n > 2 

Table 1. Pi is a maximal parabolic subalgebra of eirher o(N. C) or sp(2n. C); L(q) i s  the 
maximal reductive subalgebra of o(N. C) or sp(7.n. C) obrained by removal of the simple rwt 
uk from its diagram; Lo is the zeroth component of a parabolic grading. 

X = l  o(2) x o(2n - 2) gl(1) x o(2n - 2) Zs 

Zs 2 2 X 5 n - 2 o(2X) x o(2n - ZX) gi(X) x o(2n - 2X) 

X = n - l , n  gKn) d(n) ZS 

X = n  g W  d(4 z3 

1 5 X 5 n - 1 sp(2X) x sp(2n - 2X) gl(X) x sp(2n - 2X) Zs 

Algebra PA Lo loradd 

Let us now describe the maximal parabolic subalgebras PA and the corresponding 
parabolic gradings in terms of N x N matrices in a manner similar to that in section 2 
of [l] for sl(N, C). Consider the defining representation of o(N,  C): 

o(N,C)= { X ~ X E C ~ ~ ~ , K X + X ~ K = O , K ~ = K , ~ ~ ~ K # O ] .  (2.3) 

Fix a partition (A, p, A) of N :  
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First let N = 2n + 1 (simple Lie algebra of type B.) and set 

0 0 Kl 
K =  (& 0 Kw ;) L= ( :' l )  

I 
(2.5) 

where KO is the a x a matrix with 1 on the side diagonal and 0 elsewhere. The Lie algebra 
o(N,  C) consists of the matrices X with the following block structure: 

where we use the notation ? = KYK and 

A ,  C ,  G E CAxA E E Cpxw B E CwXl D E CAxp 
(2.7) 

C = - e T  E = - . $  G=-GTT. 

The maximal parabolic subalgebras PA of o ( N ,  C) are then represented by all the upper- 
(or lower-) triangular matrices of the form 

For all cases of N odd (and for N even, with (N = Zn) and 2 < A < n - 2) one can easily 
verify by a direct computation that the matrices 

o o c  
0 0 -AT 0 0 0  
0 0 0  0 

G O O  0 -DT 0 

(2.9) 

provide a parabolic &-grading of o(N,  C) with the matrix K given in (1.8). 
Next, we describe the three remaining cases, namely ,k = 1, n - 1, and n for even N .  

For A = 1, conditions (2.7) require that both blocks C and G be zero. The &-grading of 
(2.9) in (2.6) is thus reduced to the &-grading: 

L o = ( O  A 0  E : )  L l = ( O  O B  0 -!) L Z = ( ;  0 0 :).(2.10) 
0 0 4' 0 0  0 -9 0 

In the case A = n we have p = 0, thus we obtain another &-grading: 

(2.1 1) 

with 

Lo=(; &) L I = ( o  o c  o)  L * = ( G  0 0  ()). (2.12) 
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The difference between the present case and that of sl(n, C) is in the additional conditions 
imposed on the form of C and G in (2.7). 

Finally, in the case of A = n - I of o(2n, C) we still obtain a Z3-grading but with a 
more complicated block structure of the matrices representing it. In order to find LO. L1, 
and Lz, we start with the matrix K of (2.5): 

/ 0 0 0 K.-l\ 

X-D Leng and J Patera 

\K"4 0 0 0 / 
The structure of the blocks E ,  B ,  and D in (26) is then 

X =  

(2.13) 

(2.14) 

Note that the relations in (2.7) apply here. The sizes of the blocks are 

A ,  c, G, E C(n-W(n-1) E1 E C B i ,  Bz E C 1 X b - l )  D,, E p - 1 w  

(2.15) 

The &-grading shcture  is evident: 

A O B z 0  O B 1 0  C 

Lo= ( Dz 0 E1 0 -E1 0 -E:) 0 L i = ( O  0 0 0 0 0 -s; ) 
0 -5; 0 -AT 0 0 0  

0 0  0 0 

G 0 -DT 0 

(2.16) 

The three maximal parabolic subalgebras are written as 

PA = L o +  LI h = 1 , n -  1,n.  (2.17) 

The specific realization of the parabolic gradings given above may often be practical; 
nevertheless, it offers only a limited insight into the general structure of the problem. An 
abstract definition of the gradings requires an identification of the conjugacy classes of 
elements of order three and five of the automorphism group of the Lie algebra (the Lie 
group O(N)) which are responsible for the 4- and Zs-gradings respectively. The grading 
subspaces are the eigenspaces of the action of an individual element g on the Lie algebra. 
Two elements from the same conjugacy class give equivalent gradings. In this way, a 
grading is defined independently of any particular realization of the Lie algebra. Indeed, 
both the Lie algebra and the Lie group (hence the element g) could be described in any 
representation and relative to any basis. 

There is a complete description of conjugacy classes of elements of finite-order in 
compact simple Lie groups and their representatives in any irreducible representation given 
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in 1161; it would not be practical to reproduce it here. In order to make the connection with 
that theory, we indicate only those conjugacy classes, responsible for parabolic gradings 
using the notation of [161. In particular, a conjugacy class of elements of finite-order in 
a simple Lie group of rank n is completely specified by the n + 1 non-negative integers 
[so SI . . . s,,] with only a htvial common divisor. We also show some pertinent examples. 

The parabolic gradings of o(N,  C) are the eigenspace decompositions produced by any 
elements of the following conjugacy classes: 

g =  

[41 ... O],& 
o(2n+ l,C!),n > 3 < n [ 3 U l O . .  .O], Z5 

A-l  

(2.18) 121.. ,000.. .Ol, z3 ; -2  [ 3 U l O . .  .O], .Zs 1 / o(Zn, e), n 2 4 .A-1 

[20 . . .0010], z3 
[ZO. .  .0001], z3. 

In all of these cases the matrix g required to reproduce the 2.3- and 5-gradings described 
by the explicit matrices given above turns out to be the unique diagonal element of its 
conjugacy class. To obtain the gradings (2.9) we use 

for A = 1 1 
I e2”i/3 

12“-2 
e-tri/3 

for A = n - 1 

In-le2””6 
e-2xi/6 

( 
( ,2”i/6 

In-, e-ail6 

Indeed, putting = c,  we have 

(2.19a) 

(2.20) 
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Let us emphasize the similarity of the &-padings here and the parabolic gradings (2.8) 
of sl(N. C) in [l]. In both cases the matrices K coincide and the parabolic contractions 
are computed exactly in the same way, the result being the two non-trivial contractions of 
(2.15) of 111. 

The correspondence between the LO’S (as given by the matrices (2.9), (2.10), (2.12) 
and (2.16)) and the entries in table 1 is given by the value of A. One may observe that 
the matrices A and -iT in the Lo’s stand for the direct sum of a pair of contragradient A- 
dimensional representations of gl(h. C), and that the antisymmetric matrix E is the standard 
representation of o(N - 2h, C). 

It remains to point out the difference between the isomorphic subalgebras LO in P,-I 
and P,, of o(2n, C), n > 3. Using the standard identification of the representations of 
gl(n, C) by the highest weights we have, in the an-dimensional representation, 

R-1 3 Lo = (10.. .0)(+2) .Fj (00.. .1)(-2) 

P” 3 Lo = (10.. .0)(-2) e4 (00.. .1)(+2). 

Having described the parabolic gradings of o ( N ,  C), we can now turn to the parabolic 
contractions. It has been pointed out already that for the ZS-gradings the non-trivial 
contractions are given by (2.14) of [I]. In the case of the &-gradings we again have 
to look for solutions of the system (1.9) in [l] with the additional stipulation that the 
equalities of the system (1.9) in [I] involving zero matrix elements of the structure matrix 
(1.8) should be removed from the system. 

Direct computation yields the following seven non-trivial parabolic contraction matrices: 

/ I  1 1 . . \  / 1  1 1 . . \  / 1  1 1 . I \  

1 1 1 1  1 1 1 1 1  1 1 1 1 1  

( 1 1 0 . : )  1 5 5 ”  ( 1 1 0 . : )  1 5 5 ’  ( 1 1 0 . : )  1 0 0 ’  (2.21) 
( 1 - 5 0 )  ( 1 . . 0 0 )  y . 5 5 )  

. .  . 5 .  1 . . 5 ‘  1 . . 0 1  

\ I 1 1 5 1 .  
1 1 1 1 1  

(: 0 ; 01. 
Only in the last three cases does the contracted algebra remain indecomposable. 

3. Parabolic gradings and contractions of sp(2n,C) 

The information about the maximal reductive subalgebras of sp(2n. C) is provided in table 1. 
Let us now consider the defining 2n-dimensional representation of the Lie algebra. We have 

sp(2n.C) =(X I X E Q ~ ’ ~ ~ ~ , K X + X ~ K = O , K ~ = - - K , ~ ~ ~ K # ~ ) .  (3.1) 



Contractions of reprRrentations of o(N,  C) andsp(2n. C) 3793 

Since N = 2n, we fix the partition (1, p )  of n as 

and choose K of the form 

(3.3) 

where K, is as in (2.5) and 

Note that M here satisfies the constraints imposed on the matrix K in (3.1). Thus, we have 
the block form of a general element X of the Lie algebra sp(2n, C): 

(3.5) 
G - B T M  - i T K  

A P’M 
X = ( D  E 

where 2 = X K A  and in particular .fT = KTXT = &XT, 

A,  C, G, E CAxA E E C w X p  F E CA‘zfi D E C2’x* 
(3.6) 

In particular E represents the Lie algebra sp(2p, C). The parabolic gradings are 735 for 

c=C~K, ,  G = G ~ K *  M E + E ~ M = O .  

p > 0  

A 0  0 0 PTM 0 o o c  
L o = ( O  E 0 ) 

. I = ( :  : :) L z = ( O  0 0 0  0 0) 0 0 - i T K  
(3.7) 0 0 0 0  

0 -BTM 0 G O O  

and Z3 for p = 0 

The upper- (or lower-) triangular mahices represent faithfully the maximal parabolic 
subalgebras PA of sp(2n, C). The maximal parabolic subalgebras are 

(3.9) 

The K matrices of the parabolic gradings of sp(2n,C) are given by (1.7) and (1.8) 
respectively. Therefore, the parabolic contractions of the symplectic Lie algebras, in the 
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case of the &-grading, are given by the maaices E of (2.14) in [l], and by (2.21) above 
for the grading &. 

Finally, let us identify the conjugacy classes of the elements of order three and five in 
the symplectic group responsible for the parabolic gradings of the symplectic Lie algebras 
using, again, the notation of [16], similar to what was performed in (2.18) for the orthogonal 
groups. One then has 

X-D Leng and J Patera 

&: I 3 u 1 0  ... 01 l < A < n - l  
L-I (3.10) 

&: [2Cl~..OOl] A=n.  

Any element of these conjugacy classes provides a parabolic grading of sp(2n, C). Two 
elements from the same conjugacy class provide equivalent gradings. The explicit gradings 
exhibited in (3.7) and (3.8) are obtained by solving the eigenspace problem (2.19b) using 
(3.5) and g of (2.19a) for 1 < A < n - 1, and g of (2.20) for A = n. 

Let us now consider an example of the sp(6, C) representation of dimension six with 
the highest weight (100) and find thethree maximal parabolic subalgebras P,, A = 1,2,3. 

The parabolic gradings of the Lie algebra sp(6, C) can be described using the six- 
dimensional representation of a general element X of sp(6, C): 

X = (  i 5 i2 i] a,b,  .... z c C  (3.11) 

following from (3.1x3.4). The overbar denotes a minus sign. The element X in (3.11) 
can be written in the block form (3.5) defined in (3.6), the size of the blocks depending on 
the value of A. 

Let us fix a basis of sp(6, C) compatible with the choices made in (3.3) and (3.4). The 
generators of a root decomposition of sp(2n, C) are 

h l a d h j  
q h 2 b f g . i  

W x i r j r ; ,  

I . . . . .  
1 ’ .  

ha, = 

. .  
/. . . . .  .\ 
. . . . . .  1 ; i 1 j 

. . . . .  
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where e-,; = 

&-grading for h = 3. 

in block form as 

i = 1,2,3, and their commutators. 
According to (3.10) there are two maximal paraboIic Zs-gradings for h = 1 , 2  and one 

The grading subspaces of the maxim& parabolic subalgebras in Zygradings are written 

/ A  . ' \  1 .  . c \  

where the elements of (3.11) in each block are, for h = 1, 

and for h = 2 

For h = 3 we have the Z3 grading with P3 = LO + L,  where 

(3.13) 

The blocks E and F are zero in this case; thus, one is left with, for A = 3, 

h j ' k  

4. Parabolic gradings of representations 

A simultaneous grading of the Lie algebra L and its representation space V means a 
simultaneous decomposition of both into eigenspaces of the action of the corresponding 
gading group. We have seen that in the case of parabolic gradings the group is either Z3 
or Zs. Each of these groups is generated by a single element, g say, of the maximal torus 
of the corresponding Lie group hence it suffices to consider the decomposition of L and V 
into the eigenspaces of the action of g .  Note that the grading of L is a special case of that 
of V involving the adjoint representation. 

The way in which the parabolic gradings of the Lie algebras were described above is 
obviously not suitable for a general representation. A suitable way for our general task is 
offered by the description of the action of elements of finite order on V given in [16] because 
the unique diagonal element in each conjugacy class is particularly easily described in any 
representation. One only needs to know the weight system of the representation which is a 
textbook computational problem in Lie theory with a well known efficient solution. 

Suppose the representation @(L)  of L acts in V and suppose that we have fixed the 
Cartan subalgebra of L so that it is represented by diagonal matrices in 4. Let g be the 
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unique element of the conjugacy class [SO.. . s,] represented by the diagonal matrix +(g). 
To simplify the notation we write g for @(g). Then, the weight spaces of V (eigenspaces of 
the Cartan subalgebra) are also eigenspaces of g. For every X E Lk, v E V, and w = Xu, 
we have the grading action of g on L and V :  

X-D Leng and J Patera 

gxg-lgv = eZnik/MeZnim/MXy = gw = eZni(k+m)/MW. (4.1~) 

We write, symbolically, 

g ~ k g - l  = e%iklM L~ gv  m -  -e&im/M Vm. (4.lb) 

The subspaces Lk and vk coincide in the case of the adjoint representation. 
There is a technical complication arising during the grading of representations that 

is due to the different behaviour of the centre of the Lie group in different irreducible 
representations. Although it is automatically taken care of in our formalism described 
below, it is useful to be aware of it in order to read the results correctly. The elements g 
of (2.18) or (3.10) have the thud and fifth roots of unity as eigenvalues when acting on the 
(adjoint representation of the) Lie algebra or on any other representation where the centre of 
the Lie group is trivially represented. When acting on a general irreducible representation 
of o ( N ,  C) or sp(Zn, C), the order of g may be multiplied by a divisor of the order of the 
centre, i.e. two in the case of o(N,  C) or sp(2n, C) and also four in the case of o(2n, C). 
However, the number of non-zero grading subspaces in V remains the same as in the case 
of L,  i.e. three for 5 or five for 5, no matter what the order of 4(g) is. 

A simultaneous grading of an irreducible representation 4 ( L )  acting in V(L) implies 
the grading decompositions (1.1) with the property 

0 # Lkvm E h + m .  

The grading subspaces V, are defined by (4.lb). 

(4.2) 

We start from the known weight decomposition of V ,  

v = c V(w) (4.3) 
a, 

where the dimension of V(o) is the multiplicity of the weight o in the weight system of 
the representation, and the summation extends over the weights of the representation. Our 
task is to ‘coarsen’ (4.3) into (1.1). A subspace in the decomposition (1.1) of V, say V,, 
consists of all the V(w)’s of V on which 4(g) has the same eigenvalue exp(2aimlM). 
Thus, we need to know M and m in order to know the eigenvalue of g on V(o) in (4.lb). 

The general theory [16] provides the prescription for finding the eigenvalues of all 
[so . . . s,J. For the conjugacy classes of (2.18) and (3.10) the prescription is further 
simplified. The simplification is due to the fact that in (2.18) and (3.10) we always have 

The value of M, called the adjoint order of g in [ 161, is independent of the representation 
xi=l s k  1. 

and coincides for all the g’s of [SO . . . s,J: 
n 

M = so + m,s,. (4.4) 
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Here mp is the coefficient of a, in the expression 

a1 +zaZ+...+za" 
ai + 2az + . . . + 2an-z + an-, +a, [ 2a1 + . . . + 2 a 4  +an 

for o(2n + 1, cj 
for o(2n, C) 
for sp(2n, C) 

8 = (4.5) 

of the highest root B of L relative to the basis of simple roots. 
The value of m is determined by A and the weight w .  Put m = CA(W). For the parabolic 

gradings it turns out 1161 that CA@) is the coefficient of the simple root EA in the expression 
for the weight w as a linear combination of the simple roots 

For a given simple Lie algebra L,  the coefficients ck of all weights of all irreducible finite- 
dimensional representations can be transformed to the common denominator D equal to the 
determinant of the Cartan matrix of L. 

Assuming that all of the CA's were txansformed to the common denominator D, one 
notices that the grading group becomes ZMD. even if the number of non-empty subspaces 
V, in any ZMD-grading decomposition of an irreducible V remains at most equal to M. 

The behaviour of all irreducible finite-dimensional representations of o(N, C) and 
sp(Zn, C) with respect to the parabolic grading group i& and Zs generated by the elements 
either in (2.18) and (3.10), falls into a few categories which are relatively simple to 
describe. We consider them in the rest of this section. For a number of low-dimensional 
representations some of the subspaces V, may be zero. 

Let us recall that there is a,well known algorithm for computing weights of an irreducible 
representation starting from the highest weight, S-2 say. The weights w of the representation 
are, typically, computed relative to the basis of fundamental weights, i.e. each is given as 
an n-tuple of integers w = ( I ] ,  iz, . . . , I,,). 

4.1. Representations of o(2n + 1 ,  C) 

Consider the irreducible representations of o(2n+ 1, C) of finite dimension with the highest 
weight si acting in the space Vn. In (4.6) CA(@) is a coordinate of a weight w relative to 
the basis of simple roots 

n 

w = (11, ..., I") = c c k ( w ) a k  Ik E z (4.7) 
k=l 

where a k  are the simple mots of o(2n + 1, C). The relation between the two bases is given 
by 

2 2 2 ... 2 2 

Ck I2 j = l  Tijl, T = (T,) = $ p;: . .  i~ ; . 1. (4.8) 

2 4 6 ... 2(n-1) 2(n -1 )  
1 2  3 ... (n-1) 

A parabolic grading i s  fixed by the value of A. Only one of the coefficients ck(w) appears 
in the eigenvalue eZnimlM on V(w) ,  namely m = c ~ ( w ) .  For integer CA(U), the eigenvalues 
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are fifth roots of unity, for half odd CA(O) the eigenvalues are tenth roots of unity. To 
simplify the presentation of the results it is convenient to transform mjM to the common 
denominator 2M.  This implies, in particular, doubling the subscripts in Lj + Lzj and 
reading them modulo 10. 

The irreducible representations of o(Zn+ 1, C) split into two mutually exclusive classes, 
labelled by C = 0 and 1 which behave differently under the parabolic gradings. The highest 
weight Q = (a l ,  a*, . . . , an) is said to be of congruence class C: 
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- .  - (010.. . 00) - /I -. 
I I 

0 if a. is even 
1 if a, is odd. 

(00 . ,  ,010) 

(4.9) 

- =  - .. ./ - 

Summarizing, we have the parabolic-grading decompositions of o(2n + 1, C) and of its 
irreducible representations: 

o(2n + 1, C) =Lo + Lz + L4 + L6 + L8 

V n = Vo + V2 + V4 + & + Vs 

vn = V, + V, + V, + V, + v g  
The subscripts are read modulo 10. 

Some of the subspaces V,,, may be zero for the lowest few representations. Since this 
affects the selection of the contraction equations one has to solve, we list such cases in 
table 2. 

Q in congruence class 0 

in congruence class I. 

(4.10) 

Table 2. Parabolic grading of the irreducible representations of o(2n + 1, C) for which some 
grading subspaces are zero. The subscripts are read modulo 5 and modulo 10 for representations 
of congruence class 0 and 1 respectively. 

o(ln + 1) I 1410.. . 01 I 13010 ... O] I /30010 ... 0) 1 _ _ ,  I 130 ... OIO] I /30 ... 011 

(00.. .002)/ I6 + v, + v, lvo + v, + v,l 
IW . . . 0 0 3 h 4  + v3 + v, + vgl 
(100 ... 01) R (010.. .Ol) 

I I I boo .  .. 0ll)l  - , * - ~  

4.2. Representations of sp(2 n, C) 
Consider the irreducible representations of sp(Zn, C). Most of the conclusions of the 
previous subsection can easily be adapted to apply in the present case. 
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We replace the simple roots of o(2n + 1, C) by those of sp(2n, C). The adjoint order 
M of any [so . . . s.] is calculated from (4.4) and (4.5). Any weight w is given by (4.7) 
where 

2 2 2 '  ... 2 1 
2 4 4 ... 4 2 
2 4 , 6  ... 6 3 

2 4 6 ... 2(n-2) n - 1  
2 4 6 ... 2(n-1) n 

(4.11) 

There are two congruence classes of irreducible representations. The congruence class 
of $2 is determined by the value 

n 
c = j l j  (mod 2). 

j=1  
(4.12) 

For h < n the decompositions (4.10) apply. We have 

1 < h -= n: sp(2n, C) = LO + LZ + L4 + L6 + Lg 

A = n: sp(&, C) = LO + L2 + L4 

(mod 10) (4.13~) 

(4.13b) 

Next we list the special cases of lowest representations which differ from the generic 
cases (4.11) in that some of the subspaces are missing. By duect computation one readily 
verifies the following cases. For .Q = (10. . . 0) 

(mod 6). 

A=n: V " = V I + V , ,  & = P I  (mod6) (4.14) 

for Q = (10.. .O), (010.. .O), . . . , (0 . .  .01) 

1 < h < n: VR = Vo + VZ + & V4, V6 = 0 (mod 10). (4.15) 

4.3. Representations of o(2n, C) 

The last case to consider is 0(2n,C). The weights (21, ... , Z n )  of an irreducible 
representation are calculated from the highest weight $2 by the standard algorithm which 
gives each weight relative to the basis of fundmental weights. The coordinates of a weight 
relative to the basis of simple roots are obtained by 

2 2 2 ... 2 1 1 
2 4 4 ... 4 2 2 
2 4 6 ... 6 3 3 

2 4 6 . _ .  2(n-2) n - 2  n - 2  
1 2 3 .. . (n -2) n/2 (n -2)/2 
1 2 3 ... (n -2) (n-2)/2 n/2 

k=l 
(4.16) 

We want to describe parabolic gradings of irreducible representations of o(2n, e). 
Unlike the previous cases, the situation here is somewhat more complicated. We need' to 
consider separately even and odd values of the rank n. For a fixed n there are n parabolic 
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gradings to consider, three of them being 23 (or ZS or Z12) and the rest Z5 (or ZIQ ). In 
addition, the lowest representations have more frequently than before special (non-generic) 
parabolic gradings where a few of the grading subspaces may be zero. 

Our task is to describe. the parabolic gradings of the irreducible representations of 
o(2n. CC) for h = 1,2 , .  . . , n. For every weight w = ( I l , .  . . ,1,) the coordinates l j  relative 
to the basis of fundamental weights are integers. The grading for a fixed value of A is 
determined by the value of CA of (4.16) which is the coefficient in (4.6) of the simple root 
W. in each weight w of the representation. From (4.16) we see that for A = 1,2, . . . , n - 2 
the values of CA are integer and halfinteger. For A. = n - l,n some of the CA’s have 
denominator D = 4. 

The irreducible representations of o(Zn, C) split into four congruence classes. The 
classes are convenientry characterized by the two-component C = (C1, Cz). Since all 
weights of an irreducible representation are in the same congruence class, it suffices to 
determine the class of the highest weight C2 = (at, . . . , U,) (given relative to the basis of 
fundamental weights). One has 
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n odd: C = (UA + a., 2al+ 2Us + . . . + 2a,-z + (n - 2)u,-1 +nu,,) 
n even: C = @.-I +U,,  21 + 2Us + . . . + 2.4 + (n - 2)u.-1+ nu,). 

Here the first component Cl is evaluated modulo 2 while CZ is read modulo 4. 
The congruence class (0.0) has all weights in all its representations with integer 

coefficients CA(@). By definition the adjoint representation is of this class. Consequently 
the parabolic gradings 2 3  and Zs have the obvious structure: 

o(2n, C) = Lo + L1 + LZ 

VR = V, + VI + V2 (mod 3) 

o(2n, e) = L Q + L I  + L 2 +  L3+ L4 

V” = V, + VI + v2 + v, + v, 

A = 1, n - 1, n 

(4.17) 
2 < A  < n - 2  

(mod 5).  

Next, let the rank n be even. All C A ( @ )  now take integer or half odd values. Doubling 
the grading labels whenever needed, the parabolic gradings can be listed as 

V” = VO -+ V2 + V4 mod 6 

C = (0,Z): V” = VI + V3+ Vs mod6 

I = 1 

A = n -  1,n (4.18) 

VR = VO -!- VZ + V4 + V, + Vs mod 10 

V” = VO+ VZ + V4 mod 6 I = n  

2 < 1 < n - 2 

V” = VI + V3+ V, mod 6 

V” = vo + Vz + v4 4- v6 + Vs mod 10 

h= 1,n  - 1 
C=(l,O): (4.19) 

A = 2,4, . . . < n - 1 

V’ = V, + V j  + Vs + V, + Vg mod 10 

Vn = VQ+ V2 + V4 mod 6 

A = 3.5,. . . < n - 1 

A = n - 1 

V” = V, + V3 + Vs+ &.+ Vgmod 10 A =3,5, ... < n -  1. 
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Now let the rank n be odd. The case of representations with S2 E C = (0,2) is the 
same as for even rank. For S2 in either C = (1.1) or C = (1,3) we obtain 

V Q  = &+ V,+ Kjmod~ 12 

Vn = VI + V5 + V, mod 12 

h = 1 

h = n - 1, n 
(4.21) 

V a  = vo f vz+ V4-b v6+ vs mod 10 h =: 2,4, .,. < n - 1 

V R  = !4 + V, + V, + V, + Vgmod 10 A =3,5, .. . < n - 1. 
When the Lie algebra acts on representations graded as in (4.18)-(4.21), its grading 

labels may need to be multiplied by two or four in order to read them as on V (i.e. modulo 
6,  10 or 12). 

The cases above assume that the given representation S2 is 'sufficiently large' (i.e. 
generic case). Some of the representations of low dimension are special (non-generic) in 
the sense that several of their grading subspaces V, may be empty. The list of irreducible 
representations of  o(2n, @) which are non-generic consists of the following representations 
for all ranks n 2 4 

(IO.. ,001: a = 2 ,3  .z5, vo + vz + v, 

A = 2 

h = 3  
Zio, Vo + Vz + v8 
%IO. VI + v3 + v9, 

In addition, for the o(4, @) representations (0010) and (OOOl), three out of four parabolic 
gradings are non-generic (see examples in section 5). The parabolic gradings of the 
representation (00010) of o(5, @) are non-generic for A = 1 ,2 ,3  and 5 ,  and for (00001) 
non-generic for the cases h = 1,2 ,3  and 4. 

5. Parabolic contractions of representations 

Suppose that a parabolic grading of a classical Lie algebra L has been fixed, together with 
the corresponding grading of a representation space V and that a corresponding parabolic 
contraction LE of L is chosen. We want to construct a representation @(LE)  of the contracted 
Lie algebra acting in V .  It is economical to proceed by the grading group rather than 
considering simple Lie algebras separately by their types. Practically, we need the solutions 
@ of equations (1.11) of [I] for the chosen E .  We assume that one knows LjV, from the 
standard representation theory of the classical Lie algebras, i.e. one knows it for any choice 
of u E V, and x E Lj.  

To solve the system of contraction equations ((1.11) in [l]) for the representations, we 
need to know the structure of the grading, i.e. the values of k and m of (4.2) for which 
LiV, = 0, in order to eliminate the equations containing the corresponding hm from the 
system. For sufficiently large representations (the generic case) we always have LxVm f 0. 
The non-generic cases for o(2n, C) are listed below. 

By considering the parabolic contractions of the Lie algebras above we have, in fact, 
described such contractions of the adjoint representation. The structure of %3- or 745-gradings 
of the maximal parabolic gradings of the Lie algebras considered here is given in (1.8) and 
the solutions of the corresponding contraction equations are shown in (2.15) of [l] for the 
Z3-gradings and in (2.21) above for the &grading. 
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5.1. Parabolic contractions for Z j  -gradings 

In any of these cases there are the two parabolic contractions of L given by the matrices E 

of (2.15) of [I]. To find all @ = ($$) for a given E,  one solves the system of equations 
(1.11) in [l]  removing from the system the equations which contain E I I  and E22,i.e. the 0 
matrix elements of (1.7). 

Direct computation yields the results shown in (4.1~) and (4.lb) in [I] for each of the 
two E'S. See also the examples in section 4 of [I]. 

5.2. Parabolic contractions for 5 -gradings 

In all of these cases there are seven parabolic contractions of the Lie algebra given by the 
matrices E of (2.21). For each of them we need to solve the system of quadratic equations 
(1.11) of [I] from which the equations involving EZZ, ~ 3 3 ,  EIZ. E Z I .  ~ 3 4  and &43 are removed, 
i.e. the zero matrix elements of (12). 

p e  total number of non-trivial contraction matrices $ (i.e. with enaies 0 or 1 and not 
all q j k  = 0) for each of the seven contractions (2.21) is between 200 and 900, clearly more 
than one would like to list. With every @ the list of solutions to the contraction equation 
(1.11) in [l] also contains matrices obtained from $ by cyclic permutation of its columns; 
a few of the $'s are symmetric with respect to such permutations. If the entire quintet of 
$'s in such a list were represented by one member of the quintet the short list would still 
contain about 100 entries. The majority of these representations of LE are far from faithful. 
One of the solutions is always @ = E. 

5.3. Examples 

We end this section with examples of parabolic contractions of representations. The Lie 
algebra o(8) has three irreducible non-equivalent representations of dimension eight with 
the highest weights 
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The highest weights here are displayed in the form of the o(8) Dynkin diagram. The three 
weight systems are closely related; any one can be obtained from any other by a permutation 
of simple roots. More precisely 

(5.2) 

We choose two representations defined by the highest weights (1 0 :) and (0 0 A). 
According to (2.18) there are four parabolic gradings of o(8). The parabolic gradings of 
o(8) and of its representations are the decompositions into eigenspaces of the diagonal 
element of the conjugacy classes [ZIOOO], [30100], [ZOO101 and [ZOO011 for 2. = 1.2,3 and 
4 respectively. 
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The grading of the algebra o(8) can be found by the method used in section 2. Instead 
of writing the algebra in terms of a matrix representation, here we use the root spaces; the 
generators are then 

In order to find the gradings of the representations (1 0 :) and (0 0 i), we consult table 3 
which shows the weight systems of the two representations together with the conjugacy 
classes responsible for the parabolic gradings and their eigenvalues on each weight space of 
the representations. Bringing together the weight spaces V ( w )  with the same eigenvalue of 
the corresponding conjugacy class we find that (1 0 :) is decomposed into three subspaces: 
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ZlOOO] 

Table 3. The left wlumn wntains the weight systems of two 0(8)-1epresentations in the basis of 
fundamental weights and in the basis of simple roo&. The eigenvalues of the grading elements 
(2.18) on each weight space are found in subsequent columns. We use the notation = ekin/"'. 

[200lO] [20001] [3010( 

Weight System 

A = 1, [210001, &-grading: 

1 1 h = V(a2  + ia3 + p 4 )  + V(+3 + La4) + V(-a2 - 'a - L2.() + V(-La  + La4) 

+ V(ior3 - p 4 )  + V ( - f a 3  - ;a4) + V(for3 - $a4) 

VI = V(a1 + 012 + f o r 3  + $a4) 
vz = V(-a1 -a> - p 3  - $a4). 

vo = V(f.3 + +44, + V(+ - $24) + V ( - &  + fa.$) + V(-6a3  - fa4)  

v, = V(a1 + a2 + fa3 + $24) + V(a2 + f o r 3  + fa4)  

v4 = V ( - w  - a2 - ;a3 - +a4) + V(-a2 - 'a3 2 - lor4 2 )  

v, = Val + a2 + 5 9 3  + fa41 + V(a2 + .?org 2 + -ad) 2 + V ( L a  2 3  + 'a 2 4  ) 

+ V ( f a 3  - ;or4) 

2 3  2 2 3  2 2 
I 

(5.9) 

1 

A. = 2, [30100], 5- grading: 

I = 3, [20010], 726-grading: 

1 I 

v3=0 
I 1 1 vs = V ( - p 3  + 5 9 4 )  + V ( - , a 3  - ;a4) + V(-a2  - 1, 2 3  - La4) 2 

1 + V ( - a ,  - a2 - $a3 - p4). 

(5.10) 

(5.11) 
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A similar &-grading is obtained for A = 4 ([20aOl]) from (5.11) by the permutation 
a3 -++ E& 

The corresponding gradings for the representation (0 0 h) can be obtained either by 
direct computation as before or by simultaneous the permutation of certain simple roots and 
permutation of decompositions of V for some values of h. More precisely we have 

h = 1, [2lOOO],Z~ -grading: (5.11) with 011 +-+ a3 

h = 2, [30100], Z5 -grading: (5.10) with a1 H a3 

A = 3, [200101, E3 -grading: (5.9) with 01, M a3 
(5.12) 

h = 4, [20001], Z6 -grading: (5.11) with a3 +-+ 014 followed by 011 H g. 

The grading structures in the two representations of OUT example are nongeneric. Indeed, 
we find LjVk = 0 for certain values of j and k either because h = 0 or because vj+k = 0. 
A concise listing of these cases is provided in the form of 'the corresponding matrices K :  

/ 1  1 I \  
V = V, + VI + V2 (mod 3) 

(5.13) 
1 1 0 0 1  

V = V, + VI + V, (mod 5). 

\ I  1 0 0 a /  
The maximal parabolic contractions of the representations for each of the E in both 

&-gradings given in (2.15) of [l] and Zs-gradings given in (2.21) can be found by solving 
equation (1.11) in [I] together with the restrictions given above. The solutions for such 
non-generic maximal parabolic contraction of representations of &-gradings are discussed 
in section 4 of [I]. The results for &gradings are numerous so we list the solutions for 
just one E: 

1 1 1 1  
1 1 0 1  

1 1 . 0  
l " 0  

x y 0 0 x  

0 . 0 0 0  
" 0 0 0  

1 1 0 0 1  
1 0 0 0 .  

1 1 0 0 1  
1 0 0 0 1  

(5.14) 

1 1 0 0 1  
' 0 0 0 1  
0 0 0 0 '  
0 1 0 0 0  
' 1 0 0 0  
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where x ,  y. z take the values zero and one independently. 

grading subspaces of L on V .  Let 
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Finally let us exemplify an explicit way [5] to visualize the contracted action of the 

(5.15) 

The contracted action of LE on V can be written as 

@WLO @4lL4 $32321.3 *23L2 @14L1 
@lOLI @OIL0 'k42L4 'k33L3 @%L2 

@30L3 @21L2 @ I d 1  h3LO 'k44L4 i $4&4 @31L3 @22L2 'k13Ll @@%LO 

) (i). (5.16) L V =  *20L2 *llLI *02LO *43L4 'k34L3 

To finish the example we use (5.10) and the mahix elements of the last @ of (5.14) in 
(5.16): 

\ . L3 0 . Lo/ \v4/ \L3VI+LOV4/ 

Here both symbols 0 and . stand for 0, the first one being there before contraction and 
the second one appearing as a result of the contraction. The subspaces V, and V, are not 
changed by the contraction; indeed, they were already absent from the parabolic grading 
(5.10) before the contraction. 

If we now take the commutator of any two elements of the contracted Lie algebra and 
apply both sides of that equality to V according to (5.17), the equality is preserved. Hence 
(5.17) is a representation of the contracted Lie algebra in V .  
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